Telegram Group & Telegram Channel
Почему кто-то может предпочесть иерархическую кластеризацию вместо кластеризации на основе разбиения

1. Многоуровневая структура кластеров
Иерархические методы способны выявлять вложенные структуры: можно увидеть, как малые кластеры объединяются в более крупные. Это особенно полезно, если данные имеют естественную иерархию.

2. Гибкость при выборе количества кластеров
В отличие от методов типа K-средних, где нужно заранее задать число кластеров, иерархическая кластеризация позволяет определить их после построения, анализируя дендрограмму (древовидное представление).

3. Хороша для анализа и интерпретации
Иерархическая кластеризация часто применяется в задачах, где важно понять структуру и взаимосвязи между объектами — например, в биоинформатике (кластеризация генов), лингвистике (группировка слов), маркетинге (иерархия клиентов).

⚠️ Ограничения:

➡️ Сложность по вычислениям: стандартные алгоритмы имеют сложность $O(n^2)$ по памяти и времени, что делает их неэффективными для больших наборов данных.
➡️ Чувствительность к шуму и выбросам: особенно при использовании метрик расстояния без устойчивости к выбросам.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/1003
Create:
Last Update:

Почему кто-то может предпочесть иерархическую кластеризацию вместо кластеризации на основе разбиения

1. Многоуровневая структура кластеров
Иерархические методы способны выявлять вложенные структуры: можно увидеть, как малые кластеры объединяются в более крупные. Это особенно полезно, если данные имеют естественную иерархию.

2. Гибкость при выборе количества кластеров
В отличие от методов типа K-средних, где нужно заранее задать число кластеров, иерархическая кластеризация позволяет определить их после построения, анализируя дендрограмму (древовидное представление).

3. Хороша для анализа и интерпретации
Иерархическая кластеризация часто применяется в задачах, где важно понять структуру и взаимосвязи между объектами — например, в биоинформатике (кластеризация генов), лингвистике (группировка слов), маркетинге (иерархия клиентов).

⚠️ Ограничения:

➡️ Сложность по вычислениям: стандартные алгоритмы имеют сложность $O(n^2)$ по памяти и времени, что делает их неэффективными для больших наборов данных.
➡️ Чувствительность к шуму и выбросам: особенно при использовании метрик расстояния без устойчивости к выбросам.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/1003

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

The Singapore stock market has alternated between positive and negative finishes through the last five trading days since the end of the two-day winning streak in which it had added more than a dozen points or 0.4 percent. The Straits Times Index now sits just above the 3,060-point plateau and it's likely to see a narrow trading range on Monday.

Библиотека собеса по Data Science | вопросы с собеседований from id


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA